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Abstract

A physical model featuring the combined phenomena of fluid–structure interaction (FSI) and vaporous cavitation is

presented. The model is a closed, water-filled, T-shaped, laboratory pipe system, where the T-junction and the three

closed ends are potential locations for strong FSI coupling and/or column separation. The system is suspended

horizontally on long steel wires and is excited through external impact. The impact force and the static pressure of the

liquid control the severity of the cavitation phenomenon.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Pressure variations in a water-hammer incident can cause low absolute pressures that enable vaporous and/or

gaseous cavities to form. Sometimes, at specific locations such as closed ends, tees, knees and high points, the cavity can

occupy the entire pipe cross-section, thereby separating adjacent regions of fully liquid flow. The separated columns

subsequently behave semi-independently and, in some circumstances, can induce a rapid collapse of the void, resulting

in a sudden, large pressure rise. The steepness of wave fronts travelling away from the point of collapse can make it

likely that less-restrained parts of the pipe system will move significantly as a result of unbalanced pressure forces. This

paper reports an experimental study of these phenomena in a T-shaped pipe system.

Reviews by Tijsseling (1996) and Wiggert and Tijsseling (2001) reveal that both fluid–structure interaction (FSI)

experiments in pipe systems with branches and FSI experiments with cavitation are rare. In that sense, the present study

is entirely new: it combines FSI and cavitation in a system with a branch. The study builds on previous work. Vardy and

Fan (1989) measured the transient vibration of a straight, liquid-filled pipe and they analysed FSI in the time domain.

Zhang et al. (1999) considered the free vibration of the same pipe with measurement and analysis in the frequency

domain. L- and T-shaped systems have been the subject of study in Tijsseling et al. (1996) for L-shaped systems,

transient vibration, time-domain analysis, Vardy et al. (1996) for T-shaped systems, transient vibration, time-domain

analysis, and Tijsseling and Vaugrante (2001) for L- and T-shaped systems, free vibration, frequency-domain analysis.
e front matter r 2005 Elsevier Ltd. All rights reserved.

uidstructs.2005.01.003

ing author. Tel.: +31 40 247 2755; fax: +31 40 244 2489.

esses: a.s.tijsseling@tue.nl (A.S. Tijsseling), a.e.vardy@dundee.ac.uk (A.E. Vardy).

www.elsevier.com/locate/jfs


ARTICLE IN PRESS
A.S. Tijsseling, A.E. Vardy / Journal of Fluids and Structures 20 (2005) 753–762754
Fan and Tijsseling (1992) and Tijsseling et al. (1996) presented experimental results for FSI with cavitation in straight

and L-shaped pipes, respectively. The present paper completes the series of FSI/cavitation experiments with the T-

shaped pipe.
2. Laboratory apparatus

The T-piece pipe is shown in Fig. 1. It consists of a 4.51 m long pipe (pipe 1) connected through a rigid T-junction to

two 1.34 m short pipes (pipes 2 and 3). The pipes are made of stainless steel and have an inner diameter of 52 mm and a

wall thickness of 3.945 mm. They are closed at their remote ends and filled with pressurised ordinary tap water. The

system is symmetrical and is suspended in a horizontal plane. It hangs on four long, thin, vertical, adjustable, steel

wires, which allow horizontal vibration without significant restraint. The system is excited by the external impact of a

5 m long solid steel rod, also hanging on wires. In the experiments reported herein, the rod hits the end plug axially, i.e.,

the central axes of the rod and the long pipe are in one line at the instant of impact. Table 1 gives the material and

geometrical properties of the system. Fig. 2 shows the impact end and Fig. 3 shows the T-junction.

The T-piece pipe is instrumented with piezo-electric pressure transducers (‘‘pt’’) at 8 locations and strain gauges

(‘‘sg’’) at 6 locations, as indicated in Fig. 1. The pt are positioned along the bottoms of the pipes and at the centres of

the end caps. Each transducer (Kistler 7031) records the transient dynamic pressure and one transducer (Kistler

4073A100) also records the initial and final static pressures. The sg record the dynamic axial strains at the top, bottom

and sides of the pipes. The sensed signals are amplified and fed into two data acquisition systems (with, in total, 22

channels) at sampling rates up to a maximum of 1 MHz per channel.

An essential element of the experiment is the lining out of the system. This is done with an estimated accuracy of two

tenths of a millimetre. A surveying level and staff are used to confirm the horizontal alignment of the system and a

theodolite is used when bringing the impact rod and the long pipe into one vertical plane. The proper relative vertical

elevation of the rod and pipe is checked with a dial gauge. The system is held in its stationary position by remote-

controlled magnets that have negligible influence on the subsequent dynamic behaviour.

A small valve in the end plug enables changing the static pressure in the system by means of a hand pump. The static

pressure controls the occurrence and severity of cavitation in the water.
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Fig. 1. Top view of the symmetric T-piece apparatus with lengths in mm (not to scale).
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Table 1

Material and geometrical properties of the T-piece apparatus

Steel pipes Impact rod Water

Length(s) (m) 4.51, 1.34, 1.34 5.006

Radius (mm) 26.01 (inner)

29.96 (outer) 25.37

Young’s modulus

(GPa)

168 200

Mass density (kg/m3) 7985 7848 999

Bulk modulus (GPa) 2.14

Poisson ratio 0.29

Impact velocity (m/s) 0.809

Impact plug T-junction End cap

Mass (kg) 1.30 1.06 0.32

Fig. 2. Impact rod (A), long pipe (B) and pressure transducer ‘‘pt1’’ (C).
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This physical experiment has the important advantages of (i) no unknown support conditions, (ii) clearly defined

excitation, and (iii) no gaseous cavitation in the transient event. Gaseous cavitation is a diffusive process with an

‘‘incubation time’’ of several seconds (for water at room temperature) (Zielke et al., 1989), which is long compared to

Fig. 3. T-junction connecting the pipes 1, 2 and 3.
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the time scale of the experiment (milliseconds). Furthermore, the influence of gas is much reduced by pressurising the

water directly after filling. One minor disadvantage for the cavitation experiments is the strong temperature dependence

of the static pressure. The water temperature, which itself was not measured, could be deduced from the static pressure.
3. Experimental results

In theory, the T-shaped pipe and the excitation are symmetrical about the central axis of the long pipe. This means

that the long pipe should vibrate in its axial direction only, i.e., in-plane and out-of-plane flexural vibration should not

occur. The axial motion of the long pipe induces lateral motion of the short pipes. The pressure variations in the liquid

cause axial motion of the short pipes. Cavitation occurs when the pressure falls to vapour pressure, which is about

0.002 MPa for water at room temperature.

Figs. 4 and 5 show absolute transient pressures measured close to the T-junction for different static pressures. Fig. 4

shows pressures measured in two subsequent (typically 5-min time gap) experimental runs under practically the same

conditions. Fig. 5 shows pressures measured on both sides of the T-junction.

Figs. 4(a) and 5(a) display experiments without cavitation. The initial (static) pressure P0 is 2 MPa, which is

sufficiently high to prevent cavitation occurring at any location in the system. Fig. 4(a) shows that the repeatability of

the experiment is excellent and Fig. 5(a) confirms the symmetry of the system; in both figures, two different lines are

drawn, but these are not distinguishable at this plotting scale.
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Fig. 4. Repeatability of the experiment for six different static pressures. In each figure, two lines are drawn, corresponding to two

different tests under practically the same conditions. Transient pressures measured close to the T-junction at location ‘‘pt7’’ (in Fig. 1)

are shown. The initial static pressure P0 ranges from 2 MPa (and no cavitation) in figure (a) to 0.1 MPa (and much cavitation) in figure

(f). Horizontal axis: time (s). Vertical axis: absolute pressure (MPa).
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Fig. 5. Symmetry of the experiment for six different static pressures. In each figure, two lines are drawn, corresponding to transient

pressures measured close to the T-junction at the opposite locations ‘‘pt5’’ and ‘‘pt7’’ (in Fig. 1). The initial static pressure P0 ranges

from 2 MPa (and no cavitation) in figure (a) to 0.1 MPa (and much cavitation) in figure (f). Horizontal axis: time (s). Vertical axis:

absolute pressure (MPa).
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The axial impact of the rod onto the closed end of the long pipe generates a pressure wave in the liquid and a

longitudinal stress wave in the pipe wall. The front of the stress wave arrives at the T-junction about 1 ms after impact

and it makes the T-junction move suddenly. This movement results in a pressure drop according to the Joukowsky

relation DP ¼ rcDV , where the jumps in pressure (DP) and velocity (DV ) are proportional; the factor rc is the product

of the mass density of the liquid and its effective sonic speed. The compressive pressure wave generated by the rod

impact needs 3.4 ms to reach the T-junction. This sudden pressure rise makes the T-junction move. A detailed analysis

and interpretation of the measurements is practicable only with the aid of a dedicated computer code (Vardy et al.,

1996).

Figs. 4(b) and 5(b) show measured pressures for a decreased initial (static) pressure P0 of 0.90 MPa. The signals differ

from those in Figs. 4(a) and 5(a) because of cavitation in the liquid. At some point in the system (but not at ‘‘pt5’’ and

‘‘pt7’’, see below), the pressure has reached the vapour pressure. The signals indicate that cavitation has not occurred

near the T-junction itself: the pressure histories are well above the zero line.

Figs. 4(c,d) and 5(c,d) show measured pressures for further decreased initial pressures P0 of 0.70 and 0.50 MPa,

respectively. The pressure signals touch the zero line, so some cavitation might have occurred at the T-junction.

Figs. 4(e,f) and 5(e,f) show measured pressures for low initial pressures P0 of 0.30 and 0.10 MPa, respectively. The

liquid cannot sustain the first potential pressure drop of 0.5 MPa, and a void will develop at the T-junction. The

pressure remains at the vapour pressure of 0.002 MPa until the void collapses. In this instance, the void collapse, like the

rod impact, gives a steep rise in pressure.
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Fig. 6. Symmetry of the experiment for six different static pressures. In each figure, two lines are drawn, corresponding to transient pressures measured close to the remote ends at the

opposite locations ‘‘pt6’’ and ‘‘pt8’’ (in Fig. 1). The initial static pressure P0 ranges from 2 MPa (and no cavitation) in figure (a) to 0.1 MPa (and much cavitation) in figure (f).

Horizontal axis: time (s). Vertical axis: absolute pressure (MPa).
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Fig. 7. Symmetry of the experiment for six different static pressures. In each figure, two lines are drawn, corresponding to bending strains measured in the short pipes at the opposite

locations ‘‘sgE’’ and ‘‘sgF’’ (in Fig. 1). The initial static pressure P0 ranges from 2 MPa (and no cavitation) in figure (a) to 0.1 MPa (and much cavitation) in figure (f). Horizontal axis:

time (s). Vertical axis: bending strain (micro-strain).

A
.S

.
T

ijsselin
g

,
A

.E
.

V
a

rd
y

/
J

o
u

rn
a

l
o

f
F

lu
id

s
a

n
d

S
tru

ctu
res

2
0

(
2

0
0

5
)

7
5

3
–

7
6

2
7
5
9



ARTICLE IN PRESS
A.S. Tijsseling, A.E. Vardy / Journal of Fluids and Structures 20 (2005) 753–762760
It is evident that the occurrence of cavitation has a negative effect on the repeatability and symmetry of the

experiment. This is due to the random nature of cavitation and its dependence on the static pressure, which itself is

highly sensitive to the temperature.

Fig. 6 shows the pressures at the remote ends of pipes 2 and 3. The lateral motion of these short pipes has no direct

effect on the mean pressure, so the first pressure drop is due to the low-pressure wave originating at the T-junction and

arriving at the far ends about 1.3 ms after impact. Because the ends are closed, the pressure reduction becomes twice as

large upon reflection, namely about 1 MPa. Fig. 6(b) shows that an initial pressure P0 of 0.90 MPa is not sufficient to

sustain this pressure drop, and so it is likely that the closed ends of the short pipes are the locations where cavitation

occurs first (for P0 larger than 0.50 MPa, otherwise cavitation starts elsewhere). As already observed in previous

experiments, short-duration tensile stresses (Po0) precede the first occurrence of cavitation.

Fig. 7 shows the bending strains in the short pipes. These are defined as the differences ð�1 þ �3Þ=2 in axial strain

measured at opposite sides of the pipe circumference and they are directly related to the bending moments via

M ¼ ð�12�3ÞEI=½2ðR þ eÞ�, with EI the flexural stiffness and R þ e the outer radius of the pipe. The flexural vibration of

the short pipes is not much influenced by the contained liquid. The effect of the liquid is indirect through the changed

axial vibration of the long pipe, this being the driver of flexure of the short pipes.

Fig. 8 shows the corresponding axial strains ð�1 þ �3Þ=2 in the short pipes. Axial vibration of the short pipes is caused

by pressure variations in the water.

Fig. 9 shows pressures near the impact plug measured in two subsequent runs. The rod impact generates a pressure

rise of 0.77 MPa magnitude. Cavitation is observed in all five panels (b)–(f). It is noted that the pressure transducer

(‘‘pt1’’ in Fig. 1) is 20 mm away from the closed end and may be close to the edge of the column separations occurring
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Fig. 8. Symmetry of the experiment for six different static pressures. In each figure, two lines are drawn, corresponding to axial strains

measured in the short pipes at the opposite locations ‘‘sgE’’ and ‘‘sgF’’ (in Fig. 1). The initial static pressure P0 ranges from 2 MPa (and

no cavitation) in figure (a) to 0.1 MPa (and much cavitation) in figure (f). Horizontal axis: time (s). Vertical axis: axial strain (micro-

strain).
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Fig. 9. Repeatability of the experiment for six different static pressures. In each figure, two lines are drawn, corresponding to two

different tests under practically the same conditions. Transient pressures measured close to the impact end at location ‘‘pt1’’ (in Fig. 1)

are shown. The initial static pressure P0 ranges from 2 MPa (and no cavitation) in figure (a) to 0.1 MPa (and much cavitation) in figure

(f). Horizontal axis: time (s). Vertical axis: absolute pressure (MPa).
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there. All signals measured at this location, also with different transducers and different types of mounting, showed

spurious oscillations and unrealistic spikes. In fact, several transducers were damaged, some with a hole in the

diaphragm. Apparently, the local, nearby explosion and implosion of small cavitation bubbles is too severe a load for

them.

Most interesting is Fig. 9(f) from which it is clearly seen that cavitation starts almost immediately after impact. The

initial static pressure is so low here that the radial expansion of the pipe wall (accompanying the compressive axial stress

wave) induces a pressure drop sufficiently high to cause cavitation.
4. Conclusions

The following conclusions may be drawn.
1.
 Detailed measurements of FSI and vaporous cavitation have been presented for a laboratory apparatus including

three pipes in a horizontal plane. All three pipes share a common junction (a T-piece) and their remote ends are

closed.
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2.
 The apparatus is nominally symmetrical and so is the excitation, namely a controlled, axial impact at the remote end

of the longest pipe. In theory, identical results should be obtained in pipes 2 and 3, and on opposite faces of pipe 1.

In practice, minor differences are observed, but a high degree of symmetry is exhibited even in cases involving

significant degrees of cavitation.
3.
 The measurements have been shown to be highly reproducible. This is a necessary requirement of any measurement

designed expressly for software validation purposes. It is especially noteworthy in the case of successive tests

involving vaporous cavitation of ordinary tap water.
4.
 The data are believed to be sufficiently accurate, sufficiently detailed and sufficiently complete to justify their

widespread use for the assessment of theoretical models of FSI and cavitation. Accordingly, the data will be made

freely available to the international community through a website at Eindhoven University of Technology with

financial support from the Surge-Net project: www.win.tue.nl/fsi.
Acknowledgements

The Surge-Net project (www.surge-net.info) is supported by funding under the European Commission’s Fifth

Framework ‘Growth’ Programme via Thematic Network ‘‘Surge-Net’’ contract reference: G1RT-CT-2002-05069. The

authors of this paper are solely responsible for its content, which might not reflect the opinion of the Commission. The

Commission is not responsible for any use that might be made of data herein.

Colin Stark, Della Leslie and Ernie Kuperus are thanked for their skills and technical assistance in running the

experiments.
References

Fan, D., Tijsseling, A., 1992. Fluid–structure interaction with cavitation in transient pipe flows. ASME Journal of Fluids Engineering

114, 268–274.

Tijsseling, A.S., 1996. Fluid–structure interaction in liquid-filled pipe systems: a review. Journal of Fluids and Structures 10, 109–146.

Tijsseling, A.S., Vaugrante, P., 2001. FSI in L-shaped and T-shaped pipe systems. In: Brekke, H., Kjeldsen, M., (Eds.), Proceedings of

the 10th International Meeting of the IAHR Work Group on the Behaviour of Hydraulic Machinery under Steady Oscillatory

Conditions. Trondheim, Norway, Paper C3.

Tijsseling, A.S., Vardy, A.E., Fan, D., 1996. Fluid–structure interaction and cavitation in a single-elbow pipe system. Journal of Fluids

and Structures 10, 395–420.

Vardy, A.E., Fan, D., 1989. Flexural waves in a closed tube. In: Thorley, A.R.D. (Ed.), Proceedings of the Sixth International

Conference on Pressure Surges. BHRA, Cambridge, UK, pp. 43–57.

Vardy, A.E., Fan, D., Tijsseling, A.S., 1996. Fluid/structure interaction in a T-piece pipe. Journal of Fluids and Structures 10, 763–786.

Wiggert, D.C., Tijsseling, A.S., 2001. Fluid transients and fluid–structure interaction in flexible liquid-filled piping. ASME Applied

Mechanics Reviews 54, 455–481.

Zhang, L., Tijsseling, A.S., Vardy, A.E., 1999. FSI analysis of liquid-filled pipes. Journal of Sound and Vibration 224, 69–99.

Zielke, W., Perko, H.-D., Keller, A., 1989. Gas release in transient pipe flow. In: Thorley, A.R.D. (Ed.), Proceedings of the Sixth

International Conference on Pressure Surges. BHRA, Cambridge, UK, pp. 3–13.

http://www.win.tue.nl/fsi
http://www.surge-net.info

	Fluidndashstructure interaction and transient cavitation tests in a T-piece pipe
	Introduction
	Laboratory apparatus
	Experimental results
	Conclusions
	Acknowledgements
	References


